A Rough Sets-based Agent Trust Management Framework
نویسندگان
چکیده
In a virtual society, which consists of several autonomous agents, trust helps agents to deal with the openness of the system by identifying the best agents capable of performing a specific task, or achieving a special goal. In this paper, we introduce ROSTAM, a new approach for agent trust management based on the theory of Rough Sets. ROSTAM is a generic trust management framework that can be applied to any types of multi agent systems. However, the features of the application domain must be provided to ROSTAM. These features form the trust attributes. By collecting the values for these attributes, ROSTAM is able to generate a set of trust rules by employing the theory of Rough Sets. ROSTAM then uses the trust rules to extract the set of the most trusted agents and forwards the user’s request to those agents only. After getting the results, the user must rate the interaction with each trusted agent. The rating values are subsequently utilized for updating the trust rules. We applied ROSTAM to the domain of cross-language Web search. The resulting Web search system recommends to the user the set of the most trusted pairs of translator and search engine in terms of the pairs that return the results with the highest precision of retrieval.
منابع مشابه
Multi-granulation fuzzy probabilistic rough sets and their corresponding three-way decisions over two universes
This article introduces a general framework of multi-granulation fuzzy probabilistic roughsets (MG-FPRSs) models in multi-granulation fuzzy probabilistic approximation space over twouniverses. Four types of MG-FPRSs are established, by the four different conditional probabilitiesof fuzzy event. For different constraints on parameters, we obtain four kinds of each type MG-FPRSs...
متن کاملاستفاده از تحلیل پوششی دادههای ناهموار برای ارزیابی تأمینکنندگان، مطالعه موردی: گروه صنعتی ایران ترانسفو
Im this paper, the performance of suppliers is evaluated based on their efficiencies. Evaluation environment is not always precise and we may face imprecise for evaluation indexes values. In this situation, traditional and certain models cannot be employed. For overcoming uncertainty problem, there are different models such as stochastic, statistical, Rough, Fuzzy, etc for solving uncertainty e...
متن کاملLived experience Consumers in online stores based on the Stimulator-Organism-Response Framework (SOR)
In this study, based on the stimulus-organism-response framework (SOR), to develop a comprehensive framework of consumer experience in the field of online retailers, examining the impact of online store environment elements (web quality and brand Web site) as forecasting for emotional responses and cognitive (trust and perceived risk) and behavioral responses of consumers (want to buy) are disc...
متن کاملA Framework for Optimal Attribute Evaluation and Selection in Hesitant Fuzzy Environment Based on Enhanced Ordered Weighted Entropy Approach for Medical Dataset
Background: In this paper, a generic hesitant fuzzy set (HFS) model for clustering various ECG beats according to weights of attributes is proposed. A comprehensive review of the electrocardiogram signal classification and segmentation methodologies indicates that algorithms which are able to effectively handle the nonstationary and uncertainty of the signals should be used for ECG analysis. Ex...
متن کاملA hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts
High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...
متن کامل